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Abstract. We argue there is an urgent need for science education to respond to the societal 

phenomenon of "post-truth," to do much more in supporting students to understand how 

science constructs and reconstructs “truth.” This is not to abandon canonical content but to 

prioritize essential objectives. Students should develop a sense of how science arrives at and 

refines ideas; the messy complexity of the process; what sort of questions it can address; how 

it evolves and interacts with culture and community; how it can result in reliable knowledge 

and how it can go wrong. We draw examples from introductory physics laboratories. 

1. Introduction 

The editors invited us to reflect on what physics education research might have to say about 

“the post-truth era.” We are happy for the opportunity, because we do see a connection to 

physics education, although the phenomena of concern go beyond physics. 

1.1. The Idea of Post-Truth 

At the start of 2017, the new press-secretary Sean Spicer claimed, “This was the largest 

audience to ever witness an inauguration, period.” He said that despite plain, compelling 

photographic evidence that the attendance was much smaller than at President Obama’s 

inauguration in 2009. This is what people mean by “post- truth”: an apparent disregard of 

evidence. 

If there is a post-truth era, though, it started long before 2017. Stephen Colbert was talking 

about “truthiness” in 2005, in reference to disregard of evidence concerning the Iraq war. In 

that case, the public did not have direct access to evidence; we had to consider secondary 

reports of it and, if it mattered to us, make judgments about their reliability. As we the authors 

write this chapter, the matter of President Biden’s election is still in the news, with ongoing 

challenges to its validity. 

“Post-truth” was the Oxford Dictionary’s Word of the Year for 2016, defined as “relating 

to or denoting circumstances in which objective facts are less influential in shaping public 

opinion than appeals to emotion and personal belief” [1]. We cannot rely on that definition, 
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however, for our purposes here, because it begs a question that is pivotal to any reflection on 

science and science education: What are “objective facts”? 

To his credit, in a way, the press secretary felt the need to rebut the counter-evidence to his 

claim, arguing that the use of “floor coverings” on the mall made the photographs misleading. 

President Trump’s counselor, Kellyanne Conway, famously defended her colleague by saying 

he “gave alternative facts.” But what motivated those facts? The claim was similar to previous 

claims about Iraq (that it was responsible for the attack on the World Trade Center, that it had 

weapons of mass destruction), and it is similar now to claims about the election: There are 

efforts to refute evidence for widely accepted conclusions, but there is no evidence to support 

the “alternative facts.” Still, many people seem to believe them. 

Perhaps the name “post-truth” is misleading. Is it plausible that people do not care about 

what is true? There must be conviction driving people who, for example, put themselves at 

significant risk storming the Capitol Building. Maybe the problem isn’t so much caring about 

the truth as it is in deciding what truth is. Rather than ask “why don’t people care about truth,” 

we might ask, “How do people arrive at their truths?” What are the means they have available, 

from their communities and from their schooling, for forming, considering, assessing, and 

refining their beliefs about the world? Clearly people have many ways [2]: from tradition (it’s 

what our people have always thought); from affiliation (it’s what my people think); from 

commitments of values, authority, deduction, or what just seems obvious. 

1.2. The Denial of Science 

Scientists and science educators have written about the problem in terms of politicians’ and the 

public’s “denial of scientific evidence” and “rejection or ignorance of scientific expertise,” as 

Kienhues et al put it, “the heart of post-truthism” [3, p. 144]. There have been many examples 

over the years, such as with respect to climate change or, most strikingly this past year, COVID-

19. Again, and like Kienhues and her colleagues, we argue there is more to consider. Again the 

term science denial may be a misnomer: The public and the honest science-denying politicians 

(some may not be honest!) may not understand what science is or how it constructs truth. Most 

of what they experienced of science in schools asked and graded them for accepting the 

authority of their teachers and texts [4, 5]. Perhaps it is not science they are denying, per se, 

but “science” as they know it, the practices they learned in school of senseless memorization 

and submission to authority. 

The case of COVID-19 is most striking, and fresh in our minds, so we’ll focus on it. Again, 

the claims in the news have offered the public only secondary reports of evidence–about the 

disease, its origins, what measures are needed to stop it spreading, how it might be treated. 

People have had to make judgments about what to believe. Often that has entailed navigating 

conflicts between what they hear science says and the beliefs they have constructed by other 

means, what their communities think and trusted leaders say, and/or what makes sense to them 

by their intuition and experience. 

Most challenging, the “facts” have kept changing. In February 2020, the public was told 

not to buy masks, that masks were essential for health care workers but not important for the 

general public. A month or two later the advice was different: Science said the evidence was 

very much in favor of masks for the public. For most of the year, there was strong emphasis on 

washing hands and sterilizing surfaces, even suggestions to sequester mail and groceries, based 

on studies of how long the virus survived on surfaces. More recent evidence suggests the risk 

of transmission by contact with surfaces is low. And so on: Science keeps changing its mind. 

For those familiar with science and how it constructs knowledge, all of that is to be 

expected: What seems to be true shifts over time, with evidence, with theoretical progress and 

new calculations. The construction of truth in science takes time and is always to some degree 
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uncertain. Depending on the question, the data available, and the approaches to research, that 

uncertainty can be larger or smaller—very often, the “conclusions” at any moment can only be 

tentative. In the early months of COVID-19, epidemiological data (what happened on the 

Diamond Princess cruise ship, for example) were, by their nature, difficult to analyze. They 

were the data that were available, and scientists did the best they could. Students of science 

learn about “the test of time,” a shorthand for years of theoretical and experimental 

argumentation, but in a public health emergency it becomes important to act before the data 

undergo “the test of time.” 

Naturally, too, scientists remain human, and humans are “fraught with all kinds of 

imperfection and deficiency,” as Ibn al-Haytham put it 1000 years ago [6]. The construction of 

knowledge is not infallible—science, after all, promoted the idea that there are different races 

of people [see 7, for example], with different levels of ability, and scientists held that idea for 

many years before rejecting it. The idea failed the test of time, but it has obviously had lasting, 

terrible consequences for humanity. It is for this reason we do not advocate for education to 

support blanket deference to science, but for education that will enable people to make better 

judgments about when and how to consider what science has to say [3, 8]. 

Today there are vaccines and the news reports that they are effective and safe. For those 

familiar with randomized controlled trials and statistical power, these findings are far more 

reliable than the results from epidemiology—to be clear, this is not at all to disparage 

epidemiology; it is to recognize that testing the safety of a vaccine is amenable to controlled 

study, which greatly helps to reduce uncertainties. (Of course, those familiar with the particular 

subject matter have still more basis for accepting the findings.) For others, the reports of 

vaccines’ effectiveness and safety could easily seem like the latest best guesses, maybe to 

change like other advice over the year. 

None of that is about physics per se, but in what follows, we argue that physics education 

can and should contribute to helping students experience and better understand how science 

seeks and assesses truth—some kinds of truth, that is, such as about the climate or COVID-19. 

The ways that truth-seeking happens are messy and changing; new ideas in science often imply 

new methodologies. That makes it difficult to define; Einstein thought determinism was 

necessary for science. For our purposes here, we take science to be a pursuit of knowledge 

about the natural world that is typically based on uncertain evidence and on reasoning that 

includes assumptions, approximations, and simplifications. Something comes to be true in 

science because the community finds it to fit with other ideas and with observations. 

Perhaps most important, anyone can be wrong, including scientists; that, in fact is much 

of what science has to offer, epistemic practices that expect even obvious ideas can be wrong. 

We will argue that the best response for science education to the post-truth era–and an urgent 

need–is to place much more emphasis on learners’ experiencing the messiness and 

contingencies involved in doing science themselves. They should experience how apparently 

obvious “facts” can turn out to be false, as well as how doing science can sometimes lead to 

reliable conclusions, “facts” worth accepting as true. Thus, we hope physics education can help 

address the phenomena of “post-truth” both as they concern science directly, such as in 

COVID-19 and climate change, and as they concern more general matters of evidence and 

argumentation, such as election results. 

1.3. The Structure of this Chapter 

We begin with a brief discussion of “How truth is constructed in physics,” highlighting the 

messiness and ambiguities and uncertainties that physics curricula, in their focus on the 

canonical content, tend to set aside. We reflect on the role of community, including judicious 

reference to others’ expertise as well as the importance of the community’s hearing and 
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considering multiple perspectives, and on how the history of physics is filled with examples of 

radical, initially unthinkable ideas eventually folding into the canon. The next section, “Doing 

physics in physics class,” describes and presents some examples of classroom activities shifted 

to focus on the goal of students learning how truth is sought through inquiry. 

In the closing sections of the article, we step back out again to consider the urgent needs 

for physics education to transform, in response to the phenomena described as “post-truth” and 

“science denial.” We reflect on how physics education sits within and can manifest larger 

societal dynamics, often to the effect of limiting who participates and how. Finally, we reflect 

on some of the challenges for teachers and propose elements of a reformed agenda for teacher 

preparation. 

2. How is Truth Sought and Assesed in Physics? 

The history of physics is filled with accounts of how ideas that once seemed true—that objects 

return to rest if they are not caused to move, that space and time are independent, that the cause-

and-effect laws of physics are local and deterministic—turned out to be false or limited in 

validity. There are, of course, debates among philosophers over the nature of scientific 

progress. Kuhn wrote of “scientific revolutions” [9], arguing that the shifts of views are so 

dramatic as to make them “incommensurable,” challenging Popper’s account of “falsifiability” 

[10]. But it is clear that being wrong, and being confused or uncertain, are staples of experience 

in physics. 

2.1. Checking How Ideas Might Be Wrong 

Practices of research in physics revolve around considerations and procedures for checks of 

how an idea or fact or measurement might be wrong or uncertain. Moreover, these checks are 

part of the motivation and joy physicists experience to discover a gap or inconsistency. As we 

write this chapter, there are many physicists gleeful over a discrepancy from theory in a recent 

measurement of the magnetic moment of a muon, which might mean the current theory, the 

“standard model,” needs revision. These checks are part of the pleasure for individuals, as well, 

to discover a confusion they can work to resolve and for the experience of the pleasure in that 

challenge [11]. 

The moral for physicists is that what seems to be true is always, in principle, to some 

degree uncertain. Nothing is ever absolutely certain, but over time the uncertainty can become 

so small the community starts to ignore it. Ideas and findings come to be accepted as true if 

they pass the test of having survived challenges of counter-arguments and counter-evidence. 

By some accounts, the time to be most sure of a theory is when the community has established 

when it fails—that is when one can see the boundaries of its domain of validity [12]. 

The moral is explicitly recognized in the community and culture of physics: things that 

seem true can be false, so do what you can to check for that possibility. It may not be so 

explicitly recognized that the practices of checking keep evolving themselves or deciding what 

assumptions and previous ideas need revision is a complex, messy process. One might think, 

and physicists often say, that the bottom line is what experiments show, that physics is an 

empirical science, but evidence from the history of science challenges that simple story. 

Consider two examples. The first is from the late 1920s, in measurements of β decay. In 

this process, a neutron decays into a proton and an electron, which fly apart at high speed. The 

problem was that the sum of the energies of those two particles fell short of the theoretical 

prediction; the process also seemed to violate conservation of momentum and of angular 

momentum. In 1930 Enrico Fermi posed the idea of a neutrino as a tiny, neutral, and, as far as 

he knew, undetectable particle that is emitted during the interaction. This idea was initially 



244 | Holmes N. G., Phillips A., Hammer D. 

rejected; science needs experimental verification. But over time, it came to be taken seriously 

based on its theoretical, explanatory power: Allowing an undetectable “ghost” particle was 

preferable to allowing an exception to well-established conservation laws. Eventually, 

physicists found ways to detect neutrinos and they are now firmly established in the canon. 

Fermi’s initial idea was correct but included one key mistake: just because the neutrino was 

undetectable by experiments at the time did not mean it was fundamentally undetectable [13]. 

The second example is of another theoretical proposal. In the late 60’s, astronomer Vera 

Rubin found that the rotational speed of galaxies could not be explained by the measurements 

of mass distribution and well-established models of gravitation. If most of the mass in galaxies 

were concentrated in the stars of the galaxy, as was assumed through most of the 20th century, 

one would expect the stars near the edge of the galaxy to orbit more slowly than ones near the 

middle. Rubin observed that the rotational velocity of stars near the edge remains 

approximately constant. Perhaps, she suggested, there is dark matter, unseen mass distributed 

throughout galaxies, as had been proposed as early as the 1930’s. Some of the initial reaction 

was to question the quality of her observations (questioning that was no doubt tinged with 

sexism [14]). However, Rubin’s findings and the idea of dark matter became mainstream faster 

than Fermi’s did for neutrinos; the community seems to have been more willing to prioritize 

theoretical coherence without empirical evidence. To this day, nobody has directly detected 

dark matter, yet one would be hard pressed to find a physicist that doubts it exists. (Whether or 

not physicists will one day be able to detect it, however, is a lively debate.) 

Of course, there are many other ways that the epistemological values of physics—the 

values for what gets to count as evidence—have evolved. Over the 20th century, quantum 

mechanics brought dramatic change in physicists’ expectations of a valid, complete the- 

oretical account of phenomena. Einstein was famously unhappy about it, claiming that “God 

does not play dice,” developing careful arguments that quantum mechanics must be incomplete 

[15], even writing in private correspondence that “if all this is true then it means the end of 

physics.” [16]. 

Some of that evolution has differentiated subfields. High energy physics, for example, 

relies on the “5 σ” criteria for a measurement to count as a “discovery.” The measurement must 

be in the very tail of the predicted normal distribution, equivalent to a p-value of 3 x 10−7, far 

beyond what is used in most other scientific fields (such as the social sciences with the p < .05 

threshold). This threshold is made possible and necessary by the fact that they are working with 

a tremendous amount of noisy data: The particle collisions in the LHC generate an astonishing 

peta-byte of data per second [17]. Condensed matter physics, in contrast, needs to pay more 

attention to systematic effects than to statistical noise and so there is not a corresponding sigma-

level threshold for accepting a measurement. The condensed matter physicists still have to 

contend with and seek to minimize those systematics, but, overall, their criteria for 

measurements are much more about apparent trends in the data. Von Klitzing’s analysis of the 

integer quantum hall effect, for example, though containing extensive accounting of 

uncertainties and systematics, the voltage “clearly levels off” when the conductivity and 

resistivity “are zero” [18]. 

To summarize so far, we have highlighted how the approaches in physics for con- structing, 

assessing, and revising what the community takes as true can be messy, vary and evolve, and 

are connected deeply by theoretical and experimental understandings. Throughout, though, 

what remains stable about doing physics is that it involves deliberately looking for reasons to 

disbelieve an idea or identify possible inconsistencies and gaps. Many ideas do not survive; 

that is part of doing physics: the positing and rejection of ideas. As well, the practices and 

values support questioning any idea, including long-held views, as new possibilities for 

challenging them arise.  
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2.2. The Limited Roles of Authority and Tradition 

In these ways, the practices of constructing and assessing what is true in physics, and in other 

sciences, places much less value on authority or tradition than other means of seeking and 

assessing truth in society. That ideas have been in place for centuries or millennia, or that they 

are advocated by established figures, are reasons to give them consideration, but they are not—

at least not explicitly—sufficient reasons for their acceptance in science. This is in contrast 

with other approaches to deciding what is true in society and it is in contrast with how science 

is often depicted, perceived, and taught. Part of our motivation for writing this chapter is that 

traditional pedagogy—the physics community is driven by tradition in pedagogy—tacitly 

encourages students to accept truth by authority, very much in contrast to the practices of 

physics [19]. We have more to say about pedagogy below. 

The perception of physics as authority-driven is certainly not what physicists aspire to and 

it is in conflict with disciplinary values of pushing boundaries and seeking inconsistencies in 

theory. Although Fermi’s theory of neutrinos did not fit with the understandings of particles at 

the time, the community was eventually compelled by the evidence to shift from the previously 

established “truths.” The practices and values of physics support questioning any person; the 

cultural aesthetics of physics and science do not respect deference to authority. It would sound 

odd to say “Fermi said” or “Rubin said” as the way to support the existence of neutrinos or 

dark matter. 

One might, however, say “Fermi found” or “Rubin showed,” respecting the scientists’ 

expertise but pointing toward their having gone through some process of derivation or 

empirical study. And their standing in the field would become part of that support. To rely on 

others’ expertise is certainly within the values and practices of physics; not as blind trust or 

obedience, but out of a general understanding of the nature of that expertise and how it works. 

In evaluating a scientific claim, result, or methodology, a physicist (or scientist generally) 

makes a decision about when to think deeply through the ideas themselves and when to respect 

and rely on the expertise of others. If the approach seems inconsistent with epistemological 

values, one might choose to take more care, perhaps studying the arguments more closely, 

perhaps checking with others in the field. 

That’s within the explicit values of the discipline. There is a similar explicit respect for 

tradition; one does not reject a long-held idea the moment there is counter-evidence, physicists 

will certainly work to find explanations that remain consistent with previously established 

“truths.” Consider, for example, the response to physicists who claimed to have measured 

neutrino velocities faster than the speed of light. Their findings were met with intense 

skepticism and close examination of their work revealed small but essential flaws. 

2.3. The Persistence of Biases 

We have been describing the values of the discipline, more precisely the epistemic values, but 

it is essential to acknowledge that they are not all that drive how truth is constructed. There is 

abundant evidence that physics has not been successful in managing social biases, which affect 

who participates and rises to prominence in the field. By the explicit epistemic values, the fact 

that Vera Rubin was a woman should not have had an effect on the perceived value of her 

work—but it did. 

There are numerous examples of how implicit (or explicit) biases have led to voices being 

excluded from physics; from the female “calculators” (particularly women of color) at NASA 

being disregarded for their contributions to the space race to Marie Curie and others being 

denied faculty positions. Many would argue the issues of sexism and racism in physics are 

much more subtle today than in the past. However, biases in everything from citations [e.g., 
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20], grant funding [e.g., 21], hiring decisions [e.g., 22], reference letters [e.g., 23], teaching 

evaluations [e.g., 24–28], or grades [e.g., 29–36] impact whose voices, and thus whose results 

and claims and evidence, are heard, celebrated, and re-voiced. This further leads to a negative 

feedback cycle where women and people of color do not see themselves in the authority figures 

being celebrated and are further alienated from the field [37, 38]. These issues directly impact 

the progress of physics and what and whose truths emerge on to the field. 

Ultimately, physicists are humans and what really happens in the community of physics 

does not always match its aspirations. There are social dynamics as in the rest of society. An 

individual’s sense of truth is not simply an individual sense. Truth is motivated by the beliefs 

and values of the individual’s community (or communities). To fit into the community, to be 

respected and valued by them, one must generally take to be true what they take to be true. The 

trust in the community also translates into trust in the community’s beliefs. Our trust in science 

led us to get vaccinated and wear masks, but we were all surrounded by colleagues, friends, 

and family who were also vaccinated mask-wearers; we were influenced by surrounding 

cultural values. The same goes for the cultural values of physics and the physic classroom. 

While aspects of these social dynamics may be problematic, the humanity of physics is an 

important part of its identity and culture. Only by making it more explicit (throughout physics 

and physics education) can we strive for change. 

Our core claim in this chapter is that the messy, complex, and evolving set of practices and 

values in how physicists seek, assess, and revise “truth” should reflect in what students 

experience. Not only are these practices and values essential features of the discipline, as we 

and many others have long argued [39–41], they are also of urgent priority for society’s 

grappling with post-truth. In the next section, we discuss and give examples of how physics 

class might change to support students’ learning about how science pursues truth. 

There are challenges of course, in providing students such experiences and in coordinating 

with goals of their learning the canon (which we do not propose to abandon). One challenge, 

clearly, is that the time scales of historical progress in professional physics are years and 

decades, not the days and months that are available in school. Other challenges include views 

about schools and assessment long accepted as “truth” that we argue need to change. 

3. “Doing Physics” in Physics Class 

It is, we and others argue, an urgent objective for science education to prepare students to be 

sophisticated consumers and critics of claims and arguments they hear in the world, scientific 

or otherwise [42]. Our purpose here is to consider how physics classes might contribute to that 

objective by giving students their own experiences of doing physics and engaging in their own 

pursuits of knowledge about phenomena. 

To summarize the previous section, physicists are professional learners, so learning 

physics should mean learning how to learn. That includes developing the discipline to revise 

what you believe based on evidence and reasoning; learning to expect that you’ll be wrong. 

Learning in physics (by physicists and by physics students) forces humility, as ideas that seem 

like they have to be true often end up needing revision. 

This has to be at least part of why physics has a reputation for being more difficult than 

humanities and social sciences (which also work on “truth”): it happens so much more often 

that you find out you’re wrong. The practices of the discipline, and the nature of the knowledge 

it produces, allow learners to see contradictions in theoretical calculations or unexpected results 

from empirical investigation. If you expect the period of a pendulum does not vary with 

amplitude, for an example we’ll discuss, and you take careful measurements, you’ll have to 

contend with data that doesn’t agree. 
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In the social sciences, by contrast, it’s not so easy, or perhaps we should say forced, to find 

out you must be wrong about something. To be sure, that is a challenge for us right now in this 

chapter: Many readers have the strong intuitive sense that students must come away from 

physics class with correct understanding and we are arguing for a different urgency, that 

students come away with a rich sense of how “correctness” comes to be. While we do not 

propose abandoning canonical objectives, we are contesting their priority. But we do not have 

“objective” means of forcing the point. In matters of educational objectives and assessment, it 

is harder to know when you’re wrong. (That has to be part of why progress in education is more 

difficult than progress in STEM fields.) 

The salience of being wrong is precisely why, we argue, physics class provides a wonderful 

opportunity for cultivating epistemic virtues, including humility, open-mindedness, and 

attention to multiple lines of reasoning. To take advantage of that opportunity, however, means 

shifting from that overriding focus on correctness, which so often has students accepting ideas 

by authority (if only for the purpose of a good grade) rather than as a result of having done 

physics for themselves. 

It will help to have some examples of how that shift might happen. For this chapter we 

focus on what students experience in labs. 

3.1. Two Examples of Labs 

For many decades, physics teachers have assigned students to replicate Galileo’s findings about 

pendula, in particular that the period is independent of the mass and amplitude. He was right 

about mass and wrong about amplitude, the age-old moral is that even Galileo could be wrong; 

science is about evidence and reasoning, not authority. 

We have used this as our first lab in our introductory courses, guiding students to make 

their measurements precise. The tools have changed over the years, but one old, simple 

approach is to time swings by hand with a stopwatch, let the pendulum swing 5–10 times, and 

divide the total time by the number of swings. That’s good enough for students to get their 

measurement uncertainties small enough to see the not-quite-as-small deviations from the 

result they had expected to confirm [see 43, for sample data]. 

Students using this method typically find evidence there is some small dependence on 

amplitude [43]. That’s not what Galileo said and that’s not what the equation says (𝑇 = 2𝜋√
𝐿

𝑔
 

) for those who have seen it in their textbook or searched for it on the web. When faced with 

this contradiction, many students stall, re-estimate the size of the uncertainties in their 

measurements, or write it all off to the catch-all “human error.” Some even manipulate their 

data to obtain the desired outcome [44]. 

Why? Their expectation (their framing of the situation [45, 46]) is that the lab should verify 

the known result; known by the authority of the instructor, the textbook, Galileo. Authority is 

often the principle way they have learned to arrive at truth in their schooling, especially in 

science courses [47, 48]. It’s not irrational, that approach to arrival at truth. It certainly makes 

sense in school to trust the authority, particularly when that same authority (or its agent) will 

be scoring your tests and assigning your grades. And as we discussed above, it often makes 

sense in science: Should a single, two-hour experiment be enough to “disprove” apparently 

established findings in the field? 

In the investigation, we are after students’ learning to do science for themselves, to see 

their methods produce a discrepancy from Galileo’s claim. It is appropriate for them to take the 

authority seriously, as physicists respect the authority of their colleagues in other disciplines, 

but they should take their own findings seriously as well. We are after their working to grapple 

with the discrepancy, to examine their methods, compare their findings to other groups’, to 
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wonder if there’s something so many of them could be doing wrong. Part of learning physics 

is learning that findings like Galileo’s should be replicable; anyone ought to be able to make a 

pendulum and see what happens. 

Here is another example, used by the first author to follow the pendulum lab. Students by 

this point have studied two possible models for objects moving freely through air: a gravity-

only model and a gravity+drag model [49, 50]. The lab activity begins with students predicting 

the acceleration of an object on the way up and on the way down according to the two models. 

The gravity-only model predicts the acceleration to be 9.8 m/s2 in both directions, while the 

gravity+drag model predicts the acceleration to be less than 9.8 m/s2 on the way up and greater 

than 9.8 m/s2 on the way down. The lab is designed, again, for students to encounter a 

contradiction and this one is striking: When they measure the acceleration of a beach ball, they 

find it to be less than 9.8 m/s2 in both directions. 

In our observations of students in this lab, many grapple productively with this 

contradiction; that it follows the pendulum lab helps them frame the lab as something other 

than a game in confirmation. They check calculations, retake data, systematically consider the 

forces on the object, or begin to invent a mysterious constant upwards force on the ball [50]. 

Almost as many groups, however, engage less productively: For some, it seems, the pendulum 

lab was not sufficient to disrupt a confirmation framing; others apparently focus mainly on 

getting done with the lab as quickly as possible [49]. 

It is rare for a group to settle on an explanation for the discrepancy by the end of two-hour 

lab period, but that is not our goal. We see their struggles themselves as scientifically 

productive. They are opportunities for problematizing [11, 51, 52], a core part of doing physics, 

identifying and articulating inconsistencies in one’s knowledge or understanding. Successful 

groups in this lab are those that arrive at identifying and articulating a problem: There seems 

to be some other force acting upward on the ball, but they do not know what it is. Some groups 

might come up with buoyancy as a conjecture, but that is not the instructional goal of the lab 

(although when the topic of buoyancy comes up later in lecture, later in the semester, data 

students have from the lab can certainly contribute). 

3.2. A Focus on Students’ Learning About Empirical Investigation 

The instructional goals of these labs are that students learn how to learn about the physical 

world and to experience doing physics for themselves–that is, to experience some of the 

disciplinary practices of working toward “truth.” It is something they can do, for themselves; 

it involves uncertainty, simplifications, iteration, and continual refinement. Many students have 

difficulty with this reframing, particularly as it is one with which they are not familiar, which 

we take as evidence of the need for labs like these. 

To be clear, the instructional purpose is not simply to focus on scientific skills and practices 

[53]. Too often, a focus on skills (e.g. the control of variables strategy, hypothesis formation, 

algorithms for error analysis) can lead to a sense of science as comprised of a trivialized set of 

procedures [54–57] that one must implement to obtain objective truth [19]. The notion of 

developing a sense of the practice of science must include all the messiness and subjectivity 

and uncertainty that is inherent in the practice of science. Students must have the opportunity 

to enact their agency to critique claims and construct their own [48, 55, 56, 58]. That is to say, 

the epistemology of science must be explicitly attended to such that the process is not overly 

simplified to a set of routine procedures. 

While this seems like a lofty goal, physics activities at the middle school [59], high school 

[60–62], and college levels [43, 58, 63–70] have found ways to do this successfully. In these 

examples, students are not necessarily exploring novel questions whose answers are unknown 

in the scientific community and therefore could lead to publishable results, although this is a 
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direction many college-level biology lab courses have been taking through Course-Based 

Undergraduate Research Experiences or CUREs [71]. In fact, recent work has proposed that 

the pursuit of an authentic (i.e., novel, publishable) research question is not a requisite for the 

learning benefits from CUREs [72, 73] or even undergraduate research [74]. Instead, the 

important feature seems to be that students engage in an experiment where the outcome of the 

investigation is not predefined–where the students do not know (and better yet do not believe 

the instructor knows) what answer the experiment should produce [69]. 

This reframing presents a tension for the possibilities of developing core concepts and 

ideas alongside scientific practices and epistemology. This tension has been excellently 

articulated by others elsewhere [e.g., 19, 75], identifying the potential shortcomings of 

curricular reforms that maintain a focus on canonical knowledge alongside a focus on scientific 

practice. 

For us, and the teaching assistants (TAs) we prepare for this different sort of work, it is 

essential to recognize that the pendulum experiment is not about teaching students about 

pendula and the free-flight experiment is not about teaching students about buoyancy. Rather, 

they are about cultivating students’ understandings of empirical investigation, and that 

objective would be at odds with goals to verify or demonstrate particular phenomena. If the 

labs are to provide students experience of what it means to learn as nascent physicists, then 

there must be room in them for students to devise their own procedures, to grapple with 

uncertainties and ambiguity, even to find and explore their own conjectures and questions–we 

speak of welcoming and cultivating students’ “epistemic agency” [76]. 

3.3. The Importance and Challenges of Engaging with Multiple Perspectives 

It is a wonderful feature of physics, that everyone has experience of it. That includes widely 

shared experiences of motion and forces, of sound and light, of magnets. It also includes 

particular experiences not everyone shares, a variety among students of different sports, jobs, 

tools, musical instruments. 

It’s not enough to make room for these experiences: The instructors–ourselves, our TAs–

need to respect and engage with what students do and think and to teach them to do the same 

with each other. This is, again, how doing physics works to seek, assess, and revise what to 

accept as true, by attending, interpreting, and responding to arguments and counterarguments, 

evidence and reasoning. A great deal of work has focused on the importance of argumentation 

in science [77]; labs are wonderful spaces for it to happen. Novel, unfamiliar perspectives are 

valuable. 

This, of course, is part of the challenge of participating in these labs, for students as for 

instructors, to hear and make sense of someone else’s thinking, especially if it is novel, 

especially if they express it in unfamiliar terms. As it has been for physicists, it can be 

challenging for instructors and students to manage implicit biases cued by others’ race, gender, 

accent, or appearance — part of learning the discipline is learning to manage those biases. 

Cultivating practices of doing science means supporting students in these efforts. 

Too often an individual’s personal cultural values are pitted against the cultural values of 

the discipline, pushing students out of physics and thwarting any sense of trust in the culture 

and activities. There are tensions, no doubt, but the overlap in values is much larger than we 

typically give credit [78]. 

4. Final Remarks 

We began this chapter suggesting that “post-truth” may not be precisely a matter of people not 

caring about truth; to the contrary, people seem confident, attached, and deeply caring about 
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the truth as they see it. The problem, we posit, is in how they arrive at and maintain those 

commitments. And, we suggest, the essence of “science denial” is that people do not know 

what science is. 

Findings from Physics Education Research have shown repeatedly that traditional 

pedagogy promotes counterproductive epistemologies [79–82] assess students’ learning 

physics as information to memorize, provided by authority, that need not connect deeply with 

their experience of the physical world. To succeed in school, most learn to set their sense aside; 

the focus is more on students’ obedience than it is on their developing the discipline of mind 

physics has the potential to teach. It should come as no surprise that later, when they are out of 

school and don’t need to care about collecting points or being obedient, many come back to 

trusting their own sense of the world, sticking with their own means of deciding what is true. 

For those who stay obedient, accepting what science says as true, it must be jarring when 

science says one thing and then later changes its mind. 

We have argued for a shift in priorities in physics education toward giving students 

experience in doing physics for themselves. We focused on what can happen in introductory 

laboratories, largely because we suspect labs are the easiest places to start. They are typically 

only loosely connected to the lecture portions of classes, and there is strong evidence that 

traditionally designed labs fail in the goal of reinforcing lecture content [83]. It is, however, also 

possible and important for the shift in priorities to reflect in lecture portions of courses. There has 

been a great deal of work there as well, toward reform of lectures and discussion sections [11, 

84], although relatively little so far to prioritize students’ epistemological progress [85]. 

Scoping out still further, the arguments we have presented here apply to other sciences as 

well. Most of what happens in introductory physics is amenable to controlled experimentation, 

but for the epidemiology of the pandemic, climate change and other matters of societal 

importance, scientific investigation takes place mainly through observations. Other 

introductory courses would be better positioned to give students experience problematizing, 

constructing, and refining knowledge with data collected from events in no one’s control, such 

as in evolutionary biology or astronomy. While different scientific fields and subfields have 

their own “epistemological culture” [86] that determine what types of experimental and 

observational data are valued and are used in constructing knowledge, working with ambiguity 

and limited data are common activities across the sciences. So too is working towards a 

collective understanding through robust debate [87]. Exposure to the diverse ways in which 

scientific subfields construct knowledge and settle on truth by muddling through that ambiguity 

in multiple educational contexts will serve to further students’ ability to scientific information 

in their everyday lives. 

We have suggested that a shift in priorities, such as we have illustrated can happen in labs, 

could contribute to addressing the problems of science denial and post-truth. Experience doing 

science might help students develop a sense of what goes into the construction of knowledge 

in science, of what science can do and what it cannot, of why some findings about some ideas 

might be worth believing, even if they are inconvenient or go against common sense. It is an 

important area for further work in Physics Education Research to study how epistemological 

progress in introductory physics might affect later experience [88, 89]. 

Reflecting on ourselves personally, we believe that having a sense of how evidence 

supports results has helped us understand what has taken place over these past two years. It 

helped us understand why the views kept changing over how COVID-19 is transmitted, as well 

as why the findings are very unlikely to change over the safety of the vaccines and their efficacy 

for known variants. It helped us as consumers of advice over whether and when to wear masks, 

get vaccinated, wash our hands, eat at restaurants, although none of us is specifically trained in 

bioscience. In fact, one of us hesitated: None of the vaccines had been tested on pregnant 

women and so there was a dearth of evidence for its effectiveness or potential side effects. This 
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level of uncertainty was sufficient to necessitate a pause, to seek information from respected 

authorities, consider the impacts of other vaccines on pregnancy, dig into the biological 

mechanism, and ultimately make a decision to get vaccinated. As well, having a sense of how 

science works and what it does helped us think of these questions as matters of science rather 

than of politics. Of course, at other times, it helped us consider the limits of what science can 

offer. 

We wonder if studying science might have broader benefits for post-truth, in particular in 

what one learns about knowing. It is salient in physics: Ideas that seem to be true, even obvious, 

even necessary, even believed for centuries by millions of people, may ultimately prove to need 

revision. It seemed obvious the Earth isn’t moving, that objects will stop moving if you stop 

pushing them, and so on and so on. Doing science well involves humility; students and 

scientists get used to the phenomenon of being wrong. Perhaps there is a potential for this to 

help with thinking beyond what is specifically science: Arguments about structural and 

systemic racism are, in part, arguments to challenge old, automatic, “obvious” thinking. 

Still, there is evidence that having learned humility at the lab bench doesn’t necessarily 

transfer to humility about one’s views in politics or pedagogy. Physics educators have been 

arguing for shifts in priority toward students doing science for more than 100 years [90, 91]. 

But traditional pedagogy remains in place, supported by what seems obvious: that it is essential 

students learn the canon of established knowledge, as evidenced by their solving problems 

correctly; that explaining causes learning; that educators should assess students’ progress 

“objectively,” such as by standardized exams; that students feeling confused is a problem to 

avoid during instruction, and to punish on an exam. 
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